Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 6 de 6
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Nature ; 626(7999): 555-564, 2024 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-38356065

RESUMO

The possibility that the Amazon forest system could soon reach a tipping point, inducing large-scale collapse, has raised global concern1-3. For 65 million years, Amazonian forests remained relatively resilient to climatic variability. Now, the region is increasingly exposed to unprecedented stress from warming temperatures, extreme droughts, deforestation and fires, even in central and remote parts of the system1. Long existing feedbacks between the forest and environmental conditions are being replaced by novel feedbacks that modify ecosystem resilience, increasing the risk of critical transition. Here we analyse existing evidence for five major drivers of water stress on Amazonian forests, as well as potential critical thresholds of those drivers that, if crossed, could trigger local, regional or even biome-wide forest collapse. By combining spatial information on various disturbances, we estimate that by 2050, 10% to 47% of Amazonian forests will be exposed to compounding disturbances that may trigger unexpected ecosystem transitions and potentially exacerbate regional climate change. Using examples of disturbed forests across the Amazon, we identify the three most plausible ecosystem trajectories, involving different feedbacks and environmental conditions. We discuss how the inherent complexity of the Amazon adds uncertainty about future dynamics, but also reveals opportunities for action. Keeping the Amazon forest resilient in the Anthropocene will depend on a combination of local efforts to end deforestation and degradation and to expand restoration, with global efforts to stop greenhouse gas emissions.


Assuntos
Florestas , Aquecimento Global , Árvores , Secas/estatística & dados numéricos , Retroalimentação , Aquecimento Global/prevenção & controle , Aquecimento Global/estatística & dados numéricos , Árvores/crescimento & desenvolvimento , Incêndios Florestais/estatística & dados numéricos , Incerteza , Recuperação e Remediação Ambiental/tendências
2.
Glob Chang Biol ; 29(17): 4775-4792, 2023 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-37337393

RESUMO

Tropical forests are changing in composition and productivity, probably in response to changes in climate and disturbances. The responses to these multiple environmental drivers, and the mechanisms underlying the changes, remain largely unknown. Here, we use a functional trait approach on timescales of 10,000 years to assess how climate and disturbances influence the community-mean adult height, leaf area, seed mass, and wood density for eight lowland and highland forest landscapes. To do so, we combine data of eight fossil pollen records with functional traits and proxies for climate (temperature, precipitation, and El Niño frequency) and disturbances (fire and general disturbances). We found that temperature and disturbances were the most important drivers of changes in functional composition. Increased water availability (high precipitation and low El Niño frequency) generally led to more acquisitive trait composition (large leaves and soft wood). In lowland forests, warmer climates decreased community-mean height probably because of increased water stress, whereas in highland forests warmer climates increased height probably because of upslope migration of taller species. Disturbance increased the abundance of acquisitive, disturbance-adapted taxa with small seeds for quick colonization of disturbed sites, large leaves for light capture, and soft wood to attain fast height growth. Fire had weak effects on lowland forests but led to more stress-adapted taxa that are tall with fast life cycles and small seeds that can quickly colonize burned sites. Site-specific analyses were largely in line with cross-site analyses, except for varying site-level effects of El Niño frequency and fire activity, possibly because regional patterns in El Niño are not a good predictor of local changes, and charcoal abundances do not reflect fire intensity or severity. With future global changes, tropical Amazonian and Andean forests may transition toward shorter, drought- and disturbance-adapted forests in the lowlands but taller forests in the highlands.

3.
Nat Ecol Evol ; 2(8): 1233-1236, 2018 08.
Artigo em Inglês | MEDLINE | ID: mdl-30013131

RESUMO

European colonization of South America instigated a continental-scale depopulation of its indigenous peoples. The impact of depopulation on the tropical forests of South America varied across the continent. Furthermore, the role that indigenous peoples played in transforming the biodiverse tropical forests of the Andean-Amazonian corridor before AD 1492 remains unknown. Here, we reconstruct the past 1,000 years of changing human impact on the cloud forest of Ecuador at a key trade route, which connected the Inkan Empire to the peoples of Amazonia. We compare this historical landscape with the pre-human arrival (around 44,000-42,000 years ago) and modern environments. We demonstrate that intensive land-use within the cloud forest before European arrival deforested the landscape to a greater extent than modern (post-AD 1950) cattle farming. Intensive indigenous land-use ended abruptly around AD 1588 following a catastrophic population decline. Forest succession then took around 130 years to establish a structurally intact forest-one comparable to that which occurred before the arrival of the first humans to the continent. We show that nineteenth-century descriptions of the Andean-Amazonian corridor as a pristine wilderness record a shifted ecological baseline-one that less than 250 years earlier had consisted of a heavily managed and cultivated landscape.


Assuntos
Conservação dos Recursos Naturais , Florestas , Grupos Populacionais , Carvão Vegetal , Equador , Humanos , Lycopodium , Pólen , Dinâmica Populacional , Esporos Fúngicos
4.
Front Plant Sci ; 9: 196, 2018.
Artigo em Inglês | MEDLINE | ID: mdl-29515609

RESUMO

Tropical ecosystems play a key role in many aspects of Earth system dynamics currently of global concern, including carbon sequestration and biodiversity. To accurately understand complex tropical systems it is necessary to parameterise key ecological aspects, such as rates of change (RoC), species turnover, dynamism, resilience, or stability. To obtain a long-term (>50 years) perspective on these ecological aspects we must turn to the fossil record. However, compared to temperate zones, collecting continuous sedimentary archives in the lowland tropics is often difficult due to the active landscape processes, with potentially frequent volcanic, tectonic, and/or fluvial events confounding sediment deposition, preservation, and recovery. Consequently, the nature, and drivers, of vegetation dynamics during the last glacial are barely known from many non-montane tropical landscapes. One of the first lowland Amazonian locations from which palaeoecological data were obtained was an outcrop near Mera (Ecuador). Mera was discovered, and analysed, by Paul Colinvaux in the 1980s, but his interpretation of the data as indicative of a forested glacial period were criticised based on the ecology and age control. Here we present new palaeoecological data from a lake located less than 10 km away from Mera. Sediment cores raised from Laguna Pindo (1250 masl; 1°27'S, 78°05'W) have been shown to span the late last glacial period [50-13 cal kyr BP (calibrated kiloyears before present)]. The palaeoecological information obtained from Laguna Pindo indicate that the region was characterised by a relatively stable plant community, formed by taxa nowadays common at both mid and high elevations. Miconia was the dominant taxon until around 30 cal kyr BP, when it was replaced by Hedyosmum, Asteraceae and Ilex among other taxa. Heat intolerant taxa including Podocarpus, Alnus, and Myrica peaked around the onset of the Last Glacial Maximum (c. 21 cal kyr BP). The results obtained from Laguna Pindo support Colinvaux's hypothesis that glacial cooling resulted in a reshuffling of taxa in the region but did not lead to a loss of the forest structure. Wide tolerances of the plant species occurring to glacial temperature range and cloud formation have been suggested to explain Pindo forest stability. This scenario is radically different than the present situation, so vulnerability of the tropical pre-montane forest is highlighted to be increased in the next decades.

5.
J Paleolimnol ; 58(4): 437-453, 2017.
Artigo em Inglês | MEDLINE | ID: mdl-32009735

RESUMO

Aquatic ecosystems in the tropical Andes are under increasing pressure from human modification of the landscape (deforestation and dams) and climatic change (increase of extreme events and 1.5 °C on average temperatures are projected for AD 2100). However, the resilience of these ecosystems to perturbations is poorly understood. Here we use a multi-proxy palaeoecological approach to assess the response of aquatic ecosystems to a major mechanism for natural disturbance, volcanic ash deposition. Specifically, we present data from two Neotropical lakes located on the eastern Andean flank of Ecuador. Laguna Pindo (1°27.132'S-78°04.847'W) is a tectonically formed closed basin surrounded by a dense mid-elevation forest, whereas Laguna Baños (0°19.328'S-78°09.175'W) is a glacially formed lake with an inflow and outflow in high Andean Páramo grasslands. In each lake we examined the dynamics of chironomids and other aquatic and semi-aquatic organisms to explore the effect of thick (> 5 cm) volcanic deposits on the aquatic communities in these two systems with different catchment features. In both lakes past volcanic ash deposition was evident from four large tephras dated to c.850 cal year BP (Pindo), and 4600, 3600 and 1500 cal year BP (Baños). Examination of the chironomid and aquatic assemblages before and after the ash depositions revealed no shift in composition at Pindo, but a major change at Baños occurred after the last event around 1500 cal year BP. Chironomids at Baños changed from an assemblage dominated by Pseudochironomus and Polypedilum nubifer-type to Cricotopus/Paratrichocladius type-II, and such a dominance lasted for approximately 380 years. We suggest that, despite potential changes in the water chemistry, the major effect on the chironomid community resulted from the thickness of the tephra being deposited, which acted to shallow the water body beyond a depth threshold. Changes in the aquatic flora and fauna at the base of the trophic chain can promote cascade effects that may deteriorate the ecosystem, especially when already influenced by human activities, such as deforestation and dams, which is frequent in the high Andes.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...